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Abstract – For reliable and sustainable decision mak-
ing, it is essential to perform intelligent sensing and
data collection at scalable network resources costs. The
sensor platforms used in a warfare may be under at-
tacks from adversarial forces, which will largely impact
the overall performance of surveillance systems. Thus,
it is crucial that each intelligent sensor have the capa-
bility of detecting and avoiding possible attacks. In this
paper, we study an attack-avoidance problem under the
framework of a LQ game formulation. This is a first
attempt to solve such kind of problems. From a prac-
tical point of view, the inherent hard constraints have
been approximated and replaced by soft constraints with
a fixed optimization horizon. For implementation, a
receding horizon scheme has been used in junction with
the LQ strategies. Overall, the LQ strategies can pro-
vide good control guidance laws for the players.

Keywords: Tracking, game, linear quadratic, equilib-
rium.

1 Introduction
In modern military operations, it is desired to have

heterogeneous sensor platforms and distributed warfare
assets, which are strategically responsive, sustainable
and survivable, and provide surveillance and situation
awareness. It is therefore essential to perform intelli-
gent sensing and data collection for reliable and sustain-
able decision making, at scalable costs to the network
resources. To date, recent work seeks to reduce sensor
management noise, communication overhead, computa-
tion complexity and scalability [1, 2]. However, the sen-
sor platforms used in a warfare may be under attacks
from adversarial forces, which will largely impact the
overall performance of surveillance systems. Thus, it is
crucial that each intelligent sensor have the capability
of detecting and avoiding possible attacks, advocating
for novel sensor fusion approaches to threat assessment
(typically called Level 3 fusion) that account for sen-
sor management constraints (typically called Level 4
fusion).

To avoid the complexity involved in networked sen-
sors, as a first attempt, we study an attack-avoidance
problem with only one sensor. The problem involves
four entities: sensor, environment, target and attacker.
Here, the sensor tracks a target in a given environment,
which may be stationary or moves along its predeter-
mined trajectory. An attacker wants to collide with
the sensor to destroy it, while the sensor tries to avoid.
This type of attacker-avoidance problem is new. Al-
though sharing similarities with conventional tracking
and object avoidance problems, it certainly has more in-
gredients. It involves both tracking and the conflict of
pursuit and evasion. Control strategies designed purely
for tracking or object avoidance becomes irrelevant.

This attacker-avoidance problem also shares some
similarities with pursuit-evasion (PE) games. In a typi-
cal PE game, two players are present, i.e., a pursuer and
an evader 1. To study the optimal pursuit or evasion
strategy, it is formulated as a zero-sum game. The pur-
suer tries to minimize a prescribed cost functional while
the evader tries to maximize the same functional [3, 4].
Dynamic Programming (DP) is the a general method
for solving such games. In the literature, a number of
formal solutions regarding optimal strategies in partic-
ular PE problems have been achieved [3, 4, 5, 6]. Due
to the development of Linear Quadratic (LQ) optimal
control theory, a large portion of the literature focuses
on PE differential games with a performance criterion
in a quadratic form and linear dynamics [5, 7].

However, with an additional attacker, the existing re-
sults on conventional PE games are largely not applica-
ble to the sensor attack-avoidance problem. Here, the
point of interest is no longer pure pursuit or evasion.
The refined strategy for the sensor is to continuously
track the target while avoiding possible attacks (within
certain period of time). To our knowledge, there is little
direct literature on the attack-avoidance problem.

1Readers should be aware that pursuit-evasion games involv-
ing multiple pursuers and evaders have been studied in the liter-
ature.
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Missile guidance and navigation is another related re-
search area. In a conventional navigation problem, con-
trol laws have been designed for an interceptor to track
a moving target (with no attacker). The proportional
navigation guidance law and its variants have been the
most widely employed techniques for non-maneuvering
targeting due to their simplicity and ease of implemen-
tation [8]. Another large class of guidance laws relevant
to this problem are those designed based on optimal
control theory, of which many are applications of LQ
optimal control theory [8].

In this paper, we formulate the attack-avoidance
problem as a zero-sum game between the sensor and
the attacker. This is a first attempt to such a problem,
and to avoid theoretical difficulties, we adopt a LQ for-
mulation to make use of the existing LQ game theory.
In particular, as a practical approach, terminal penalty
terms are used as soft constraints in the adopted game
completion. With additional assumptions on the linear
dynamics of the players, LQ differential game theory is
applicable. Furthermore, a practical approach to this
emerging problem is developed with a sequential imple-
mentation scheme. The performance of the algorithm is
demonstrated through simulations which validates the
usefulness of the approach.

In the proposed LQ game approach, the key assump-
tion and the main limitation is that the trajectory of
the target (at least in the immediate future) is known to
both the sensor and the attacker, which in many case,
is not valid in sensor applications, due to the concern
that collecting information is the main goal. However,
the approach is still worth considering because the ap-
proach offers an opportunity of avoiding attacks while
keeping track of a target for the sensor. In this sense,
the assumption can be interpreted as the sensor’s pre-
diction of the target’s movement. In a broader sense,
the target here can also represent an uncertain area to
be searched, and the ”known trajectory” represents the
areas of the highest interest.

The paper is organized as follows. In Section 2, an
attack-avoidance game is formulated with linear dy-
namics and a quadratic objective based on soft con-
straints. Equilibrium strategies of the players are de-
rived in section 3. An implementation scheme is then
introduced in Section 4 to fill the gap between the LQ
formulation and real-world attack-avoidance problems.
In Section 5, we evaluate the performance of the pro-
posed strategies by simulations and comparisons are
drawn with the existing strategies. Concluding remarks
are provided in Section 6.

2 Linear Quadratic Formulation

with Soft Constraints
In this section, we formulate the attack-avoidance

problem using soft constraints under the LQ framework
with a fixed horizon. Consider a sensor, an attacker

and a target in an nS-dimensional space S ⊆ R
nS with

nS ∈ N. Let xs ∈ R
ns , xa ∈ R

na and xt ∈ R
nt be

the state variables of the sensor, the attacker and the
target respectively, with ns, na, nt ≥ nS . Suppose that
each player in the game has its independent dynam-
ics, which is described by the following linear equations
respectively.

ẋs(t) = Asxs(t) + B′

sus(t) with xs(t0) = xs0 (1a)

ẋa(t) = Aaxa(t) + B′

aua(t) with xa(t0) = xa0 (1b)

ẋt(t) = Atxt(t) + B′

tut(t) with xt(t0) = xt0 (1c)

Here, xs(t) ∈ R
ns , xa(t) ∈ R

na and xt(t) ∈ R
nt for

t ≥ t0; us(t) ∈ Us, ua(t) ∈ Ua and ut(t) ∈ Ut are con-
trol inputs; As, Aa, At, B

′

s, B
′

a, B′

t are real matrices with
proper dimensions. Suppose that the first nS elements
of xs (xa, xt) stand for the physical position of the sen-
sor (attacker, target) in S. We can define a projection
operator P : R

ns 7→ S for the sensor as

P (xs) = [xs1, · · · , xsnS
]
T
∈ S. (2)

That is, P (xs) gives the sensor’s position in S. Similar
operators can also be defined for both the attacker and
the target, and here we use the same notation P .

For simplicity, we use the following aggregate dy-
namic equation.

˙̄x(t) = Āx̄(t) + B̄sus(t) + B̄aua(t), (3)

where

x̄ =

[

xs

xa

]

, Ā =

[

As 0
0 Aa

]

, B̄s =

[

B′

s

0

]

,

B̄a =

[

0
B′

a

]

.

Define x , [xT
s , xT

a , xT
t ]T ∈ R

n with n = ns + na + nt.
We assume that each player can access the state x at
any time t, and in this paper, feedback strategies are
considered. Let γs : R

n×R 7→ Us and γa : R
n×R 7→ Ua

denote the strategy of the sensor and the attacker re-
spectively. Given x ∈ R

n and time 0 ≤ t < T ,
γs(x, t) ∈ Us, γa(x, t) ∈ Ua. Denote by Γs, Γa the
set of admissible feedback strategies for each player.

We consider the objective functional of the following
form.

J(γs, γa;x0) =

∫ T

0

(

us(τ)Tus(τ) − uT

a (τ)ua(τ)

+wI
s‖P (xs(τ)) − P (xt(τ))‖2

−wI
a‖P (xa(τ)) − P (xs(τ))‖2

)

dt

+ws‖P (xs(T )) − P (xt(T ))‖2

−wa‖P (xa(T )) − P (xs(T ))‖2 (4)

In (4), γs, γa are feedback strategies; us, ua are the con-
trol inputs associated with each corresponding strategy;
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ws > 0,wa > 0, wI
s and wI

a > 0 are weighting scalars as-
sociated with the relevant costs induced by the distance
between the sensor and the target and that between the
attacker and the sensor. In this formulation, the dis-
tance between the attacker and the sensor is used as a
penalty term to approximate the “hard constraint” of
the problem, which mandates that the sensor stay out
of reach of the attacker. The use of a penalty term is
a common approach in optimal control and differential
game theory to deal with hard constraints, especially
under the LQ framework [9]. Note that a penalty on
the distance between the sensor and the target is also
included, which enables the sensor to closely track the
target (while avoiding the attacker) under the result-
ing strategy. The fixed time duration T and scalars
ws,wa,wI

e , wI
p are design parameters, and their values

are case dependent.
The objective J in (4) can be rewritten in a quadratic

form with respect to x, us and ua, i.e.,

J(γs, γa;x0) =

∫ T

0

(

us(τ)Tus(τ) − uT

a (τ)ua(τ)

+xT(τ)Qx(τ)
)

dt + xT(T )Qfx(T ), (5)

where Q can be defined through mapping Q̂2: Q =
Q̂2(w

I
s , wI

a), Qf = Q̂2(ws, wa), where Q̂2 : R × R 7→
R

n×n (n = ns + na + nt) is defined in (6) below.

Q̂2(ws, wa) =




(ws − wa)InS

ns×ns
waInS

ns×na
−wsI

nS

ns×nt

waInS

na×ns
−waInS

na×na
0na×nt

−wsI
nS

nt×ns
0nt×na

wsI
nS

nt×nt



(6)

In (6), In0

n1×n2
is an n1 × n2 matrix, in which the first

nS rows and nS columns form an identity matrix, and
the rest of the entries are zero.

This attack-avoidance game is a zero-sum game,
where the sensor seeks a strategy γs ∈ Γs to minimize
J subject to (3), while the attacker tries to maximize
J with γa ∈ Γa. The game can be viewed as a dual
tracking problem, where the sensor wants to track the
target but to avoid the attacker, and at the same time,
the attacker needs to follow the sensor closely.

3 Game Solution for the Attack-

Avoidance Problem

3.1 Review of LQ Game Theory

We first introduce players’ saddle-point equilibrium
strategies in a two-player LQ different game. This will
be the major tool that we rely on in this paper. Let us
consider a game involving two players with the following
linear dynamics

ẋ(t) = Ax(t) + B1u1(t) + B2u2(t). (7)

Note that here x is the state variable in this game, and
different from aggregate state x defined above. The

meaning of this notation is only true in this section.
The objective function is given as

J =

∫ T

0

(

u1(τ)Tu1(τ) − uT

2 (τ)u2(τ)

+xT(τ)Qx(τ)
)

dτ + xT(T )Qfx(T ). (8)

The following LQ theorem specifies saddle-point equi-
librium feedback strategies for both players.

Theorem 1. The game with players’ dynamics in (7)
and the objective J in (8) admits a feedback saddle-point
solution given by u∗

1(t) = γ∗

1(x(t), t) = K∗

1 (t)x(t) and
u∗

2(t) = γ∗

2(x(t), t) = K∗

2 (t)x(t) with K∗

1 (t) = −BT

1 Z(t)
and K∗

2 (t) = BT

2 Z(t), where Z(t) is bounded, symmet-
ric and satisfies

Ż = −ATZ − ZA − Q + Z(B1B
T

1 − B2B
T

2 )Z

with Z(T ) = Qf . (9)

Readers can refer to [4] and [10] for a detailed proof.

3.2 Game Solution for the Attack-

Avoidance Problem

In the attack-avoidance game, we consider that the
target that moves along a predetermined trajectory
xt(·) in R

nS . The movement of the target is known
to both the sensor and the attacker.

Consider the dynamics of the sensor and the attacker
in (1a)-(1b). Note that in (1), the target’s control
is known (with a known trajectory), and the game is
played between the sensor and the attacker. By in-
spection of the objective (4), we find that an attack-
avoidance game with an arbitrarily moving target is
closely related to a LQ regulator problem with a ref-
erence state trajectory [11]. In what follows, we make
use of this analogy to solve the game. The following
theorem provides saddle-point strategies of the players.

Theorem 2. Suppose that the target trajectory xt(t) is
known. The attack-avoidance game with the dynamics
in (1a) and (1b) and the objective J in (4) admits a
feedback saddle-point solution under the strategies

u∗

s = γ∗

s (x, t) = −B̄T

s Z11x̄ − B̄T

s b; (10)

u∗

a = γ∗

a(x, t) = B̄T

a Z11x̄ + B̄T

a b, (11)

where B̄s, B̄a, x̄ are defined in (3); the n̄× n̄ (n̄ = ns +
na) matrix Z11 are bounded and satisfies

Ż11 + ĀTZ11 + Z11Ā + Q11 − Z11(B̄sB̄
T

s

−B̄aB̄T

a )Z11 = 0, with Z11(T ) = Qf 11
. (12)

Here Q11, Q12, Qf 11
, Qf 12

are the corresponding sub-
matrices of the matrices Q and Qf partitioned as

Q =

[

Q11 Q12

QT

12 Q22

]

and Qf =

[

Qf 11
Qf 12

Qf
T

12
Qf 22

]

,
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with Q is defined in (5). Matrices Q11 and Qf 11
are n̄×

n̄ matrices; Ā is given in (3); the time-varying vector b
is specified by

ḃ(t) =
[

−ĀT + Z11(B̄sB̄
T

s − B̄aB̄T

a )
]

b(t)−Q12xt (13)

with b(T ) = Qf 12
xt(T ).

Proof. We use Theorem 1 to prove the theorem. For the
time being, we temporarily assume that the trajectory
of the target xt(·) is generated by an autonomous linear
system (without control) as

ẋt = Atxt with xt0 given. (14)

Later, we will show that this assumption is not neces-
sary.

Combining the dynamic equations (1a)-(1b) with
(14), we can write an aggregate dynamic equation as

ẋ(t) = Ax(t) + Bsus(t) + Baua(t), (15)

where x,A,Bs, Ba are defined as

x =





xs

xa

xt



 , A =





As 0 0
0 Aa 0
0 0 At



 ,

Bs =





B′

s

0
0



 and Ba =





0
B′

a

0



 .

The objective is still the same as (5).
For a game with the objective in (5) and the players’

dynamics in (15), Theorem 1 is applicable. That is, if
the following Riccati equation

Ż = −ATZ − ZA − Q + Z(BsB
T

s − BaBT

a )Z

with Z(T ) = Qf (16)

admits a solution Z over the interval [0, T ], the saddle-
point strategies of the sensor and the attacker are given
by

u∗

s(t) = −BT

s Z(t)x(t) and u∗

a(t) = BT

a Z(t)x(t). (17)

In (17), Z is a n×n matrix (n = ns +na +nt), and we
now partition Z in the following way,

Z =

[

Z11 Z12

ZT
12 Z22

]

.

Here, Z11 is an n1 × n1 matrix with n1 = ns + na; Z12

is an n1 ×nt matrix; and accordingly, Z22 is an nt ×nt

matrix. Matrices Q and Qf can also be partitioned in
the same way into submatrices Qij and Qf ij

with the

same dimensions of Zij (i, j ∈ {1, 2}). Note the dif-
ference between A here and Ā in (3) as well as those
between Bs, Ba and B̄s, B̄a. With the submatrices de-
fined above, the Riccati equation (16) can be presented
separately in terms of Zij , Qij and Qf ij

as

Ż11 + ĀTZ11 + Z11Ā + Q̄ (18)

−Z11(B̄sB̄
T

s − B̄aB̄T

a )Z11 = 0, Z11(T ) = Qf 11
;

Ż12 + Z12At + ĀTZ12 + Q12 (19)

−Z11(B̄sB̄
T

s − B̄aB̄T

a )Z12 = 0, Z12(T ) = Qf 12
;

Ż22 + Z22At + AT

t Z22 + Q22 (20)

−Z12(B̄sB̄
T

s − B̄aB̄T

a )Z12 = 0, Z22(T ) = Qf 22
.

The advantage of partitioning the Riccati equation in
this way is that the saddle-point strategy of the sensor
(or the attacker) can be decomposed into two parts.
Note that xT = [x̄T, xT

t ]. Accordingly, the sensor’s op-
timal control in (17) can also be written as

u∗

s = −B̄T

s Z11x̄ − B̄T

s Z12xt. (21)

Next, we define b , Z12xt. Take the time derivative
of b. Based on Ż12 in (19), we obtain the differential
equation of b(t) below.

ḃ(t) =
d

dt
(Z12xt) = Ż12xt + Z12ẋt

= Z12(Atxt) − (Z12At + ĀTZ12 + Q12)xt

+Z11(B̄sB̄
T

s − B̄aB̄T

a )Z12xt

=
[

−ĀT + Z11(B̄sB̄
T

s − B̄aB̄T

a )
]

Z12xt − Q12xt

=
[

−ĀT + Z11(B̄sB̄
T

s − B̄aB̄T

a )
]

b(t) − Q12xt

(22)

The initial conditions for equation (22) is b(T ) =
Z12(T )xt(T ) = Qf 12

xt(T ) can be easily derived. Here,
b(t) can be completely determined by solving (22).
Thus, the saddle-point strategy in (21) is

u∗

s = −B̄T

s Z11x̄ − B̄T

s b. (23)

By inspection of (23) and (22), the saddle-point equi-
librium strategy actually does not depend on the as-
sumption of the target’s linear dynamics given in (14).
Finally, the saddle-point equilibrium strategy of the at-
tacker u∗

a in (17) can be further derived to obtain

u∗

a = B̄T

a Z11x̄ + B̄T

a b.

Remark 1. The theorem can also be proved by solving
the corresponding Hamilton-Jacobi-Isaacs equation as-
sociated with the game without the auxiliary assumption
in (14).

In Theorem 2, the saddle-point strategy of the sen-
sor (or the attacker) has two terms. The first term is
feedback that depends on the state variables of both
the attacker (or the sensor) and itself. This part is the
game strategy that is coupled with the attacker’s (sen-
sor’s) reaction. The second term in is a feedforward
term that solely depends on the target’s motion.
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4 On Implementation of the LQ

Strategies in Practice
The discussion under the framework of LQ game

above takes advantage of the availability of analytical
solutions. However, its usefulness remains to be tested.
The gap between the LQ game approach and a real-
world attack-avoidance game lies in the fixed terminal
time T in the formulation, which imposes a soft con-
straint on distances. To demonstrate the usefulness of
the LQ formulation in practice, we propose a sequential
implementation scheme as follows.

We choose ∆t > 0 as the sampling time interval. At
each sampling time tk = t0 + k∆t for k ∈ {0, 1, 2, · · · },
saddle-point equilibrium strategies γ∗

s , γ∗

a are solved
over the interval [tk, tk + Tk], where Tk > ∆t is the
optimization horizon used in the quadratic objective
(4). We will discuss shortly the choice of Tk and the
related issue about the existence of solutions for the
corresponding Riccati equation. The game strategies
γ∗

s , γ∗

a are implemented for only the next ∆t inter-
val, i.e., [tk, tk + ∆t). At the following sampling time
tk+∆t, the same procedure is repeated. We call this im-
plementation scheme LQ Receding Horizon Algorithm
(LQRHA). The detailed calculation at each time tk is
given in Table 1, where ws, wa, wI

s , wI
a are the design

parameters.

Table 1: Procedure at Each tk in the LQRHA

1. Input: state x at time tk
2. Obtain the parameters ws, wa (wI

s , wI
a) and Tk

3. Solve the saddle equilibrium feedback strategies
γ∗

s , γ∗

a over the time interval [tk, tk + Tk)
4. Output: γ∗

s , γ∗

a

We now discuss how to choose a proper Tk, such
that the corresponding Riccati equation (9) admits a
bounded solution on [0, Tk], or in other words, the inter-
val [0, Tk] contains no escape time [12]. A finite escape
time (if it exists) of a Riccati equation can be deter-
mined in the way suggested by the following theorem.
Note that since the problem here is time invariant, the
existence of solutions over [0, Tk] is essentially the same
as that over [tk, tk + Tk] regardless of tk.

Theorem 3. The Riccati Differential Equation (RDE)
(9) has a bounded solution over [0, T ] if and only if the
following matrix linear differential equation

[

Ẋ(t)

Ẏ (t)

]

=

[

A −S
−Q −AT

] [

X(t)
Y (t)

]

,

[

X(T )
Y (T )

]

=

[

In

Qf

]

(24)

has a solution on [0, T ] with X(·) nonsingular over
[0, T ]. In (24), A,Q and S = B1B

T

1 − B2B
T

2 are the

corresponding matrices in (9). Moreover, if X(·) is in-
vertible, Z(t) = Y (t)X−1(t) is a solution of (9).

Refer to [10], pp. 194 or [12], pp. 354 for a proof.
According to Theorem 3, we define a finite escape

time Te > 0 (if it exists) such that T − Te is the small-
est time such that the matrix X(T −Te) at time T −Te

is singular2. The escape time can help determine the
optimization horizon Tk. Suppose that we know how
to choose the optimization horizon T̂k (a design vari-
able in the LQ design approach) based on the system
states without considering the existence of solutions for
the Riccati equation, e.g., T̂k = T (xk). Then, by solv-
ing the linear differential equation in (24), it may be
checked whether Te ∈ [0, T̂k]. If Te /∈ [0, T̂k], then
Tk can be chosen as T̂k; otherwise, Tk can be set as
Tk = Te − δ for some δ > 0. With Tk chosen in this
way, the Riccati equation in (9) is guaranteed to have
a bounded solution over [0, Tk]. Here, Te only needs to
be calculated once because the equation (9) is not state
dependent. On the other hand, we need to choose a
proper sampling time ∆t such that Tk > ∆t.

5 A Numerical Example
In this section, we demonstrate the usefulness of the

LQ strategies by solving a selected attack-avoidance
game in R

2.

5.1 Players with Simple Motion

Suppose that the sensor and the attacker have the fol-
lowing simple motion dynamics in R

2, which are given
in an x̄-ȳ coordinate as

{

˙̄xs = vsūs cos(θs)
˙̄ys = vsūs sin(θs)

;

{

˙̄xa = vaūa cos(θa)
˙̄ya = vaūa sin(θa)

(25)

and the initial states are known. Define xς = [x̄ς , ȳς ]
T

as an aggregate state, and the subscript ς ∈ {s, a}
stands for sensor or attacker. In (25), x̄ς , ȳς are the
displacements along the x̄ and ȳ axis; vς is the speed,
which is a constant; ūς , θς are the control inputs, where
ūς ∈ [0, 1] is a scalar that determines the player’s mov-
ing speed from 0 up to vς , and θς is the moving orienta-
tion. To make use of the LQ approach, in the following,
we use an equivalent dynamics in the following form.

[

˙̄xs

˙̄ys

]

=

[

vs 0
0 vs

] [

usx̄

usȳ

]

,

[

˙̄xa

˙̄ya

]

=

[

va 0
0 va

] [

uax̄

uaȳ

]

. (26)

In (26), (uς x̄, uς ȳ) are the control inputs with the con-

straint
√

uς
2
x̄ + uς

2
ȳ ≤ 1. Clearly, (ūς , θς) and (uς x̄, uς ȳ)

forms a one-to-one mapping with θς ∈ [0, 2π).

2Note that the Riccati equation (9) is solved backwards since
its value is given at the final time T . Hence, T − Te is used here.
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The dynamics in (26) are linear in the inputs uς ,

[uς x̄, uς ȳ]T but with an additional constraint on the
boundedness. We still rely on the LQ approach to de-
sign the feedback control law γς . To ensure the bound-
edness, the following nonlinear function ϕ(·) is used.

ϕ(r) =

{

r if ‖r‖ ≤ 1
r/‖r‖ if ‖r‖ > 1

for r ∈ R
m with m ≥ 1

(27)
In the simulations, the actual control uς applied is uς =
ϕ(γς(x)).

5.2 Attack Avoidance Game

We consider an attacker-avoidance problem with a
mobile target that moves along a specific trajectory,
which is known to both the sensor and the attacker.
The movement of the target is described by the follow-
ing equation.

{

x̄t = 0.5t;
ȳt = −0.5t − 5 sin(π

5
t).

The speeds and the initial positions of the players are
specified in Table 2. The units of the parameters can
be arbitrary and not specified here.

Table 2: Simulation Parameters
Sensor Attacker Target

Speed 1 1
Initial Position (-9, -4) (-9, -9) (2,2)

We apply the LQRHA algorithm to determine both
the sensor’s and the attacker’s strategies. Let the sam-
pling time interval ∆t = 0.1 second. At each sampling
time tk = t0 + k∆t, the optimization horizon Tk is cho-
sen as 15 seconds for all k. The parameters in the ob-
jective functional (5) are chosen as ws = wI

s = 10 and
wa = wI

a = 100. Here, wI
ς = 10 indicates that the dis-

tances between players are much more important than
the control energy needed in the LQ formulation. The
relative numbers between wa, wI

a and ws, w
I
s are chosen

to reflect the fact that avoidance of attacks is of greater
importance than tracking.

Figure 1 depicts the players’ trajectories under the
LQ game strategies. Here, the arrows indicate the in-
stantaneous moving directions of the trajectories at the
end of the simulation. With the LQ game strategy,
the sensor is able to follow the target and stay away
from the attacker. On the other hand, the attacker can
closely follow the sensor and well position itself between
the sensor and the target. This is important because
the attacker may lose its ability of reaching the sensor
if it follows the sensor too closely, and we will see the
case shortly where the attacker uses other strategies.

Next, we compare the LQ game strategies with al-
ternative tracking strategies (purely designed based on

−5 0 5 10 15

−15

−10

−5

0

5

10

15

Players’ Trajectories

Attacker 

Sensor 

Target 

Figure 1: Players’ Trajectories with the LQ Game
Strategies

tracking problems) adopted by both the sensor and the
attacker respectively. In each case, one player keeps its
current LQ game strategy unchanged while the other
player switches to another strategy. Two alternative
strategies are considered, and both are well-known navi-
gation strategies [8]. One is a LQ tracking strategy that
is directly obtained by following the same procedure
described in this paper, i.e., by solving an optimiza-
tion problem with the objective function (4) where the
weights wI

a, wa (or wI
s , ws) are set zero. With the zero

weights on the selected penalty terms, it is no longer
a game problem but an optimal tracking problem be-
tween the sensor and the target (or the attacker and
the sensor). The other strategy to be considered is the
so-called Line-Of-Sight (LOS) strategy, which will be
specified shortly. Both of the strategies are designed to
merely track an object of interest. Besides the changes
in the players’ strategies, all other parameters of the
game remain the same, and a same length of the game
time duration is used in the simulations.

We first simulate a scenario where the sensor still
uses the same game strategy determined earlier, while
the attacker switches to other strategies. The game
result in Figure 2 shows the case where the attacker
uses the LQ tracking strategy.

On the other hand, a possible LOS feedback strategy
of the attacker is defined as follows.

uLOS
a = va

xs − xa

‖xs − xa‖
(xs 6= xa).

Figure 3 illustrates the simulation result when the at-
tacker uses this LOS strategy.

In the both cases above, without prediction of the
sensor’s movement based on the motion of the target,
the attacker loses its capability of intercepting the sen-
sor considering that it moves at the same speed as the
sensor.

Similar comparisons have also been drawn if the sen-
sor deviates from its LQ game strategy. At this time,
the attacker adopts the same LQ game strategy while
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Figure 2: Players’ Trajectories When the Attacker Uses
the LQ Tracking Strategy
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Figure 3: Players’ Trajectories When the Attacker Uses
the LOS Strategy

the sensor uses both the LQ tracking and the LOS strat-
egy. The game results are plotted in Figure 4 and Fig-
ure 5 respectively. The LOS strategy for the sensor is
given as

uLOS
a = vs

xt − xs

‖xt − xs‖
(xs 6= xt).

In both cases, the sensor is intercepted by the at-
tacker within the simulation time. Without considering
the attacker, other tracking strategies should lead to a
similar result.

Finally, Figure 6 shows the players’ trajectories when
the sensor implements an escaping strategy that is de-
termined by solving the same game problem with the
weights wI

s , ws = 0 in the objective function (4). Note
that since wI

s , ws = 0, i.e., with no penalties on tracking
the target, the main objective of the sensor is to escape
from the attacker. Here, the attacker uses the same LQ
game strategy.

Based on the simulation examples above, it is clear
that the LQ game design provides for the sensor with
a better compromised strategy between tracking and
avoiding attacks. From the sensor’s perspective, imple-
menting both pure target tracking and escaping strate-
gies has obvious disadvantages. Each represents an ex-
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Figure 4: Players’ Trajectories When the Sensor Uses
the LQ Tracking Strategy
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Figure 5: Players’ Trajectories When the Sensor Uses
the LQ Tracking Strategy
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Figure 6: Players’ Trajectories When the Sensor Uses
the LQ Tracking Strategy

treme of the entire spectrum of possible strategies from
mere escaping to tracking. As seen in the simulations,
without considering the attacker, the sensor under a
pure tracking strategy is likely to be destroyed by the
attacker. On the other hand, with an escaping strategy,
tracking of the target has been given up. In both cases,
the mission of tracking could be failed. The advantage
of the LQ game approach is that the knowledge or a
prediction of the target’s future movement provides a
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better chance for the sensor to avoid possible attacks
while keeping the track of the target. When the danger
of being attacked is eliminated, the sensor is still in a
good position for tracking tasks under normal condi-
tions.

Another observation is that the LQ game strategy
also provides a better attacking strategy for the at-
tacker. From the simulations, blindly going after the
sensor can cost the attacker the chance of intercept-
ing the sensor. The game strategy somehow predicts
the sensor’s movement and better aligns the attacker’s
movement with the sensor and the target in this three-
entity game situation.

Based on a number of simulations, it is clear that
the LQ strategy with the LQRHA implementation can
provide fairly good guidance laws for both the sensor
and the attacker.

6 Conclusions
In this paper, we have studied a attack-avoidance

problem under the framework of a LQ game formula-
tion. From a practical point of view, inherent hard con-
straints have been approximated and replaced by the
soft constraints with a fixed optimization horizon. We
have derived equilibrium strategies for both the sensor
and the attacker. For implementation, a receding hori-
zon algorithm called LQRHA has been proposed for ap-
plication of the LQ strategies. Simulations have shown
that this LQ game design can successfully provide for
the sensor with a better compromised strategy between
tracking and avoiding attacks, for which a traditional
design can fail. Overall, the LQ strategies based on
the LQRHA implementation can provide good control
guidance laws for both players in this problem.

The main limitation of the approach is the assump-
tion that the trajectory of the target is known to both
the sensor and the attacker. In practice, this assump-
tion can be interpreted as the sensor’s prediction of the
target’s movement. In a broader sense, the target here
can also represent an uncertain area to be searched, and
the ”known trajectory” may represent the areas of the
highest interest.
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